Introduction to Chemometrics

Chemometrics

- Use of mathematical and statistical methods for selecting optimal experiments Statistical experimental design Design of Experiments (**DoE**)
- Extracting maximum amount of information when analysing multivariate (chemical) data
 E.g. classification, (process) monitoring, multivariate calibration, Quantitative Structure-Activity Relationships (QSAR)

Why perform experiments?

- Increase understanding of observed phenomenon(s)
- Identify what is important for influencing an investigated system
- Find experiments (compounds) with desired properties
- Make predictions about the outcome of new experiments

DoE – terminology

• Experimental domain

The experimental area studied, area where model is valid

Factors

Controlled variables which can be varied independently and have an impact on the result in the experiments ("X-block")

- Independent variables Same as factors
- Quantitative variables
 Continuous variables Independent variables which can be adjusted to any value over a specified the range

DoE – terminology

- Qualitative or Discrete Variables
 Independent variables which describe noncontinuous variation, e.g. type of solvent, cell medium A or B
- Responses

Variables which are observed and a result from changing independent variables ("Y-block")

• Dependent Variables Same as responses

DoE – terminology

• Residuals

The difference between the observed response and the response predicted from the model

- Uncontrolled or background variables Known variables which are not possible/desirable to alter
- Unknown variables Currently unidentified variables

Aim of Modelling

- Present the result in a clear and interpretable way graphics very useful!
- Extract as much information as possible from the experiments
- Provide a "correct" conclusion validate!
- Indicate which new experiments to perform and the probable outcome of these

Model types

• Fundamental models (hard models, "global models")

 $E = mc^2$ $y = y_0 e^{-kt}$ U = IR

Empirical models

(soft models, "local models") Taylor expansions (polynomials of different complexity)

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_{12} x_{12} + e$$

Models

Mathematical Equation Describing a System

- Chemistry
- Biology
- Physics
- Economics
- *etc*.

Soft Modelling Smaller Parts of the Universe is Modelled

A smaller experimental domain is investigated

Linear Model

$$y = b_0 + b_1 x_1 + b_2 x_2 + e$$

e =

The residual, the part of the data the model does not explain Important for validating the modell

Second Order Interaction Model

AcurePharma

Quadratic Model

AcurePharma

Establishing the Model

- Generally a model is based on a set of experiments, where some output (response or responses) has been measured
- In the experiments different factors, variables, are investigated at different levels, i.e. settings (e.g. temp., conc., logP, nos. C, etc.)

Limitation of Models

- Usually only local validity (soft models) (interpolation/extrapolation)
- All models are wrong ... but some are still very useful!
- How should the experiments be performed in order to gain as much information as possible?

Change One Separate factor at a Time

Change One Separate factor at a Time

Statistical Experimental Design

AcurePharma

Statistical Experimental Design

- Planning of experiments to perform in order to extract as much information as possible with as few experiments as possible
- Analysis of the result modelling

Experimental Strategy

Most important: **Definition of Aim(s)**

- Problem formulation:
 - What is the aim?
 - What is desired? (yield, purity, activity, robustness)
- Familiarization
 - What is known?
 - What is unknown?
 - Test experiments

The time you spend in the beginning to define a project you will have back with interest in the end!

AcurePharma

Screening designs: Full Factorial Designs

- Every level of a factor is investigated at both levels of all the other factors
- It is a balanced (orthogonal) design
- *k* factors (experimental variables) gives with a 2 level full factorial design
 2^k experiments

Full Factorial Designs

Most common: investigate in two levels

The experiments in a design with two variables

The experiments in a design with three variables

More variables – hyper cube

Full Factorial Designs 2^k Experiments

For two variables

Exp. No.	x ₁	X2
1	-	-
2	+	-
3	-	+
4	+	+

For three variables

Exp. No.	x ₁	X ₂	X ₃
1	-	-	-
2	+	-	-
3	-	+	-
4	+	+	-
5	-	-	+
6	+	-	+
7	-	+	+
8	+	+	+

For four variables

Exp. No.	x ₁	X ₂	X 3	X 4
1	-	-	-	-
2	+	-	-	-
3	-	+	-	-
4	+	+	-	-
5	=	-	+	-
6	+	-	+	-
7	-	+	+	-
8	+	+	+	-
9	-	-	-	+
10	+	-	-	+
11	-	+	-	+
12	+	+	-	+
13	-	-	+	+
14	+	-	+	+
15	-	+	+	+
16	+	+	+	+

Simple to generate – similar pattern no matter the number of variables to investigate!

Analysis of result Multiple Linear Regression (MLR)

- Regression method using a least squares fit "Classical regression"
- Requires independent variables in the X-block
- Separate model for each Y response Coefficients for each y analysed – variable influence can be identified

Always look at the raw data – e.g. a replicate plot

- Each point represent an experiment
- Exp. no 15 performed in replicate
- Variation in overall response, not in replicate

Cross-validation gives Q²

Parts of the data is held out and a model is build on the remaining → repeated until all data has been kept out once

$$Q^{2} = 1 - \frac{\Sigma(\text{Yobs-Ypred})}{\Sigma(\text{Yobs-Yaverage})}$$

etc.

Model diagnostics

Nature of data	\mathbb{R}^2	Q^2
Chemical	Acceptable: ≥ 0.8	Acceptable: $\geq 0,5$
		Excellent: > 0,8
Biological	Acceptable: > 0,7	Acceptable: > 0,4

- The goal is **not** to optimise Q²
- A stable and interpretable model which can be used for predictions is desired
- A lousy model can still provide useful information

Useful plots

- Replicate plot
- Design matrix
- Residuals
- Coefficients
- ANOVA tables/plots
- Contour plots
- More...

Candy production – "sega råttor"

X (independent) –variables

- Amount sugar (g)
- Amount glucose (g)
- Amount H₂O
- Amount Gelatine
- Amount H₂O
- Mix H₂O/gelatine speed
- Mix H₂O/gelatine time
- Mix H₂O/gelatine heat
- Mix 2 speed
- Heat 114
- Cool temperature
- Colour
- Flavour

Y (dependent) –variables

- Colour
- Taste
- Sweetness
- "Seghet"
- Form
- Size

AcurePharmetc.

Full Factorial Designs

Sega råttor... Problem!

With an increasing number of variables the required number of experiments rapidly becomes impractical to handle...

Number of variables	Number of Experiments
2	4
4	16
6	64
8	256
10	1024
12	4096
14	16384
16	65536

Fractional Factorial Designs (FFD)

- One solution is to use a smaller part

 a fraction of the full factorial design
- Possible to greatly reduce the number of experiments
- Still investigate the defined experimental domain well
- 2^{k-p} experiments required, k = number of variables, p the size of the fraction

Factorial Designs

(2³) Full (2³⁻¹) Fractional

number of experiments

Statistical Experimental Designs

Example of different types of designs

- Full factorial designs
- Fractional factorial designs
- Plackett-Burman designs (special case of FD)
- D-optimal designs
- Taguchi designs
- Central Composite Designs (CCC and CCF)
- Mixture Designs
- Simplex Designs

Multivariate analysis

- PCA
- PLS
- MVD

Chemometrics

- Use of mathematical and statistical methods for selecting optimal experiments Statistical experimental design and optimisation
- Extracting maximum amount of information when analysing chemical data Multivariate data analysis

Multivariate design Combining statistical experimental design and multivariate data analysis – a tool in drug discovery
The (scientific) world today

- Generating numbers to understand and quantify phenomenon's around us
- Many responses are measured, sometimes at regular time intervals
- "Large" data tables are generated
- Tools for viewing all data simultaneously are needed

Principal Component Analysis (PCA)

- A projection method extract information (variance) from large data sets
- Creates "windows" in a multidimensional space (matrix with several variables correlated to each other)
- Graphical **plots** to interpret the result; identify classes, patterns, outliers, etc.

Data pre-treatment

Default setting is mean centering and unit variance scaling

PCA – graphical description

Investigating three variables, e.g. formula weight, melting point and log P

PCA - A graphical example

Raw data

No.	Gender	Shoe Size	Height (cm)
1	Female1	37	168
2	Female2	36	166
3	Male1	42	185
4	Female3	38	171
5	Male2	41	174
6	Male3	43	180
Mean		39.5	174

Centring of data

Raw data

Centred data

No.	Gender	Shoe Size	Height (cm)		
1	Female1	37	168		
2	Female2	36	166		
3	Male1	42	185		
4	Female3	38	171		
5	Male2	41	174		
6	Male3	43	180		
Mean		39.5	174		

Shoe Size	Height		
-2.5	-6		
-3.5	-8		
2.5	11		
-1.5	-3		
1.5	0		
3.5	6		

The mean is calculated for each variable. The centring subtracts the mean from values of each variable.

Plotting the data Raw data vs Centring

AcurePharma

1st principal component

1. Fit a line to the data points through the origin

2. Make a perpendicular projection to the principal component for all data points

3. Measure the distance from the origin to the projections

 \implies Score values (t_i)

- 1st principal component

4. Measure the angle, α, between the principal component and each variable

5. Calculate $\cos(\alpha)$

→ Loadings (p_i)

– 1st Principal component

6. DModX - Distance to the Model in X (X = the data table)

Finding deviating observations

AcurePharma

Comparison between the "graphical" PCA and the PCA obtained from SIMCA

	<u>.</u>	"Graphical" PCA		SIMCA PCA	
No.	Gender	t ₁	р ₁	t ₁	p 1
1	Female1	-6.5	Size = 0.39	-6.4945	Size =0.35
2	Female2	-8.75	Height = 0.92	-8.7171	Height = 0.94
3	Male1	11.05		11.185	
4	Female3	-3.35		-3.3339	
5	Male2	0.6		0.51964	
6	Male3	6.85		6.841	

 $R^2X = 0.98033$

Calculation of R²X

$$R^{2}X=1-\Sigma(x_{i}-x_{ipred})^{2}/\Sigma(x_{i}-X_{mean})^{2}$$
 i.e.
$$1-SS_{Res}/SS_{Tot}$$

or
$$R^{2}X=\Sigma(x_{ipred})^{2}/\Sigma(x_{i}-X_{mean})^{2}$$
 i.e.
$$SS_{Pred}/SS_{Tot}$$

AcurePharma

Score plot (t₁) - to evaluate the result

Questionnaire PCA example

- Questions in the form of ranking on a continuous scale or as yes/no
- 213 general questions about TV-programs, celebrities, food habits, ethical opinion, etc.
- "Limited time" for answering the questionnaire

Data – the chemistry department

- 14 persons → observations
- 213 questions "describing" the chemists
 variables

	Djurparker	Källsortering	Sagan om ringen	Harry Potter	Karl-Bertil Jonssons julafton	Solarium	Politik	Bantning
	DIV	DIV	DIV	DIV	DIV	DIV	DIV	DIV
	DIV	Se	Media	Media	Media	DIV	DIV	DIV
ation 1	-1	3	5	4	4	1	-5	-3
	3	-1	5	0	5	-3	2	0
	3	2	5	2	5	0	2	2
	2	3	1	1	3	-2	-1	1
	-3	-4	4	2	5	-4	-2	-5
	5	2	5	0	4	1	1	-4
	3	3	0	5	3	-3	-1	3
	3	-1	4	2	1	-2	0	-2
	-3	3	0	0	0	1	1	1
	-3	2	4	3	4	-2	0	-4
	3	0	5	0	4	-4	-5	-5
	0	-5	4	3	3	0	0	0
	0	2	4	3	1	-2	0	0
	3	1	5		1	-3	-2	-5

Observation

Ν

Finding relations

• Relating the persons to the questions, i.e. the observations to the variables

Finding patterns

PCA

- Same principals with a larger number of variables
- Principal components are always orthogonal (independent) from each other
- Each principal component summarises the data set by generating scores for the observations with <u>corresponding</u> loadings for the variables, i.e. scores and loadings should be compared to each other
- Can handle moderate amount of missing data (25%)

Determining the number of principal components Q² – cross-validated value indicating how well

- Q² cross-validated value indicating how well the model is able to predict the data (explained variance)
- Eigenvalue the length of the principal component
- (Chemical) interpretation in the plots, e.g. A=1 (A denotes the number of components)

PCA objectives

- Overview of data <u>always</u> a good starting point (historical data, data from other sources)
- Identify patterns in the data set
- Identify important variables
- Identify outliers
- Understand how variables (loadings) and observations (scores) are related to each other

PCA objectives

- Classification & clustering dividing the data set depending on the patterns (structure) of the data set
 - Treated vs. untreated
 - Before vs. after treatment
 - (cross-over designs, difference in time)
 - Bioinformatics (proteins, enzymes)
- Classify new observations
- Summarise data with a fewer number of variables – generating "principal properties" design variables for multivariate design (starting materials or products, chemical libraries)

Soft Independent Modelling of Class Analogy

- Referred to as SIMCA classification
- Separate PCA models for each identified class
- Predictions of new objects in score space
- Predictions of new objects in DModX
- Use your and the knowledge of others...

PCA Modelling

AcurePharma

SIMCA Modelling, Class I

PLS - Partial Least Squares Projection to Latent Structures

- A projection method, "regression extension of PCA"
- Find the relation between the latent structure in X and latent structure in Y
- Maximize the covariance between the X block and the Y block
- PLS1 one Y variable
- PLS2 more than one Y variable

Analysis of the result

- Relating the variables (X-block) to the response or responses (Y-block)
- Need a regression method which can handle correlated X-variables
- Analyse many Y variables at the same time

PLS

- Can handle many noisy collinear variables (compare with MLR)
- Tolerate moderate amounts of missing data (X and Y)
- Multiple responses modelled at the same time
- The result can be graphically visualized i.e. score plots and

CONFIDENTIAL loading plots

64/92

PLS - Geometric Interpretation Same observation x_3 y_3 y_3 y_4 y_3 y_4 y_4 y_4 y_4 y_4 y_5 y_2 y_2

 Each observation is represented by one point in the X-space and one in the Y-space

 \bigcirc

 \mathbf{O}

 \bigcirc

• As in PCA, the initial step is to calculate and subtract the averages; this corresponds to moving the coordinate systems

AcurePharma

PLS - Geometric Interpretation

 The mean-centering procedure implies that the origin of each coordinate system is re-positioned

PLS - Geometric Interpretation

- The first PLS-component is a line in the X-space and a line in the Y-space, calculated to
 a) approximate the point-swarms well in X and Y
 b) provide a good correlation between the projections (t₁ and u₁)
- Directions are w₁ and c₁ and co-ordinates along these vectors are t₁ and u₁, respectively AcurePharma

PLS - Geometric Interpretation

The projection coordinates, t₁ and u₁, in the two spaces, X and Y, are connected and correlated through the inner relation

 $u_{i1} = t_{i1} + h_i$ (h_i is a residual)

AcurePharma slope of the dotted line is 1.0

PLS predictions

- A new observation is similar to the training set if it is inside the tolerance cylinder in X-space
- Then its projection on the X-model (t) can be entered into the T-U-relation giving a u-value for each model dimension
- These values define a point on the Y-space model, which, in turn, corresponds to a predicted value for each y-variable

PLS - Model diagnostics

SIMCA supports two internal model validation strategies

1. Cross validation

To estimate the optimal model complexity

2. Response permutation test (Validate-option) To check the degree of overfit

Evaluation of R² and Q²

total CONFID

- PRESS is the sum of squared differences between predicted and observed y-elements $PRESS = \sum (y_{im} - \not P_{im})^2$
- PRESS can be transferred into a dimensionless quantity, Q², which resembles R²

 $Q^2 = 1 - PRESS/SSY_{total}$

- R² is always larger than Q²
- High R² and high Q² is desired
- The difference between R² and Q² should not be too large

PLS-DA PLS Discriminant Analysis

- Adds information in a Y block indicating group belonging
- X variables important for separation can be identified
- Works for more than two groups
PLS – step by step

- 1. Problem definition / Objective
- 2. Collect data
- 3. Import data
- 4. Pre-treatments
- 5. Calculate model
- 6. Evaluate/Validate model
- 7. Analyse model
- 8. Suggest new experiments

Multivariate design

Combinatorial Chemistry

- Fast compound generation On solid phase, in solution, phage display, in parallel, in mixtures
- Analytical chemistry Purification, analysis methods
- ID/characterization Coding, LC-MS, NMR
- Fast biological testing High Trough-put Screening
- Increase structure diversity Synthesize and test a large number of compounds

AcurePharma

Drug Discovery Aim: Reduce Development Time

Information Drives the Drug Discovery Process

FILED PATENT → THE CLOCK IS RUNNING

The Combinatorial Explosion

Rapidly generate a great number of possible compounds

DENTIAL

78/92

• Commercially available reactants (ACD – Available Chemicals Directory, others)

AcurePharma

The Chemical "Space"

- ~ 10²⁰⁰ organic molecules with a molecular weight of less than 850 g/mol
- ~10⁴⁰ organic compounds with "drug like properties"
- 10¹⁷ seconds have passed since the Big Bang Roughly 10 to 20 billion years ago
 - if you believe in that model...

Practical Limitations

- ~ One million compounds in mixtures
- ~1000 compounds in parallel synthesis
- Costs and practical obstacles to consider
 - Equipment
 - Synthesis
 - Work up
 - Biological testing
 - (£ 0.1 2.0 per sample, 1996)
 - Disposal considerations
 - Personnel

(salaries, training, etc.)

Important concepts

Maximum diversity

Chose as different compounds as possible *Diversity*: spread of compounds with a defined set of descriptors *Descriptor*: a variable characterizing a property of the compounds

• Similarity

Chose structures similar to a known active compound, lead optimization

Best Selection?

Selection in a chemical space defined by two descriptors

All structures

Not only the number of compounds synthesised (experiments) that are of importance!

AcurePharma

Design – screening

Increase training set – decrease risk of leverage due to deviating results

AcurePharma	Ac	urel	Pha	rma
-------------	----	------	-----	-----

Follow up design

Multivariate design

- Multivariate characterization +
- Multivariate data analysis (PCA and PLS) +
- Factorial designs →
- MULTIVARIATE DESIGN (MVD)
- When used in drug development and with design in identified sub-cluster – Statistical Molecular Design (SMD)

Multivariate Design

- Tool for selecting **representative** structures
- Full factorial designs
- Fractional factorial designs
- D-optimal designs
- Works for more than two principal properties
- Factorial designs
 - synthesis optimisation
 - formulation optimisation
 - process optimisation *etc.*

Summary

- Historical data
 - □ Always a good starting point for analysis (PCA)
 - Determine data structure, preferred format/output
 - Get acquainted with the process and the data
 - □ Find "hidden" information
 - Good starting point for discussions
- Determine
 - The aim is there a defined stop criteria (yield, purity, accepted batches, ID important/"sensitive" variables etc.)
 - □ Important to define prior to investigation
 - know when to stop
 - The experimental domain (variables, settings, responses)

Summary

- Design of Experiments (DoE)
 - □ Simplify analysis
 - Ensure a systematic variation in the investigated experimental domain
 - Small design within the defined limits
 - □ (Design in historical data)
- Analysis
 - PCA (SIMCA etc.)PLS, PLS-DA
 - u flo, flo-l
- Next step
 - □ Aim(s) reached
 - Important variables
 - □ New optimal experiments

Acure Pharma Business model

Consulting services

- Support chemistry
- Support IPR questions and problems
- Second opinion/news value
- Chemometrics PAT (Process Analytical Technology, FDA guidelines)
- Network

Drug development

- Proprietary compound library
- Finding financing for drug development
 - Company collaborations
 - Venture capital
 - Governmental funding (7FP, VINNOVA)
- Defined AcurePharma projects
- Exploratory research

AcurePharma

Acure Pharma History

. . .

AcureOmics AB September 2007 VINNOVA grant BBB, May 2007 Start-up company of the year 2007 Action Pharma A/S – collaboration Uminova – in-licensing of Cancer project Research agreement with professor Sharma AnaMar Medical AB, Out licensing Carlsson Research – Research agreement, MVA Educational activities (SE, UK) Second opinion, Novelty search Consulting in research and development Acure Pharma Consulting AB -> Acure Pharma AB Bidding on the compound library (Melacure) -2004.

AcurePharma

Future outlook

. . .

. . .

Clinical trials Phase I Identification of new early projects Start up Ltd in UK? – EU project, 2008 – 2011 Consulting and educational activities Establish additional research collaborations

. . .

AcurePharma

Project pipeline 2008

AcurePharma

CONFIDENTIAL

92/92